

Abstract—— There has been a significant

increase in the number of mobile devices sold and

their computation capabilities in recent years. The

computational capability of a cluster of mobile

devices presents us with an opportunity to utilize

those resources in a number of real world

applications. We have developed PowerShare- an

Android based application that uses a combination

of Wi-Fi-P2P and Bluetooth to form an

infrastructure with nearby devices. The network

represents a shared resource pool of all the

connected devices. By taking into account the load

each node can handle, PowerShare delegates

tasks optimally to every connected node in the

network. PowerShare’s optimal allocation

function coupled with the unutilized

computational resource of a mobile device can be

used in many distributed processing applications.

The design and experimental results based on a

prototype are presented. The results show that

PowerShare successfully optimizes task allocation

to nodes and utilizes their computing resources

efficiently.

Index Terms—— Android, Bluetooth,

Distributed Computing, Distributed Processing,

PowerShare, Wi-Fi, Wi-Fi-P2P.

I. INTRODUCTION

Mobile devices have become everyday utilities.

Around 2.1 billion units were shipped in

2015.Around 84%[1] of the 349 million

smartphones shipped in the first quarter of 2016

were based on an Android OS. The spectrum of

Android based smartphones range from the high-

end Samsung Galaxy S6 which came with 3GB

RAM and a 2.1 GHz Quad-Core Cortex A-57

processor to the low end Samsung Galaxy V which

came with 512 MB RAM and a dual core 1.2 GHz

processor. The resources present in these mobile

devices are rarely utilized to their full capacity.

Everyday users rarely utilize the computing

resources in their smartphones to their maximum

limit. The resources, however, if utilized to their

extent can be used in a number of situations that

would otherwise require a complete distributed

processing infrastructure. For example, a white-hat

tester might be able to form a network and

implement a Brute-force attack using a cluster of

mobile devices by delegating each node with tasks.

The attack will be implemented faster as the

processing time of the entire task will be subdivided

by the number of nodes and each node will process

the data it receives in parallel. In this paper we

present PowerShare, an Android application that

provides the functionality of forming a hybrid

network of mobile devices for distributed

computing using Wi-Fi-P2P(for data transmission)

and Bluetooth(for control and synchronization).The

application can be used for a number of tasks that

can be optimized in a distributed environment.

Tasks such as web-scraping can be seamlessly

distributed among available devices resulting in

distribution of the computing as well as the

bandwidth load required for such a task.

In the following sections, Section 2 states past work

related to the field of distributed computing in

mobile devices using Wi-Fi and Bluetooth. Section

3 gives information regarding the protocols and

tools used in the implementation. Section 4

describes the types of tests conducted using the

application and the results obtained from the same.

In Section 5 conclusions and future scope of the

application are detailed.

PowerShare:

A Distributed Processing System for Android Devices

Vignesh Pradeepkumar, Shubham Jayawant, Khoshrav Doctor, Prof. Sanjay Vidhani

Department of Information Technology

K. J. Somaiya College of Engineering

II. RELATED WORK

Implementations of distributed computing based on

ad-hoc networks on smartphones are relatively new

and research is still being done to make the system

scalable and reliable at the same time.

WDC on Android Platform describes a method to

interconnect mobile devices over a wireless mesh

network and distribute tasks to optimally calculated

number of nodes using Wi-Fi architecture[2].

However this does not leverage the significantly

more powerful and secure[3] Wi-Fi Direct standard.

Hinojos et al. describe BlueHoc[4]which advanced

on existing architectures based on Bluetooth-based

distributed processing in smartphones. Significant

advances in the Bluetooth protocol enable us to

build a more robust system. PowerShare uses

dynamic splitting. Instead of the traditional

procedure of creating equal splits for each device,

PowerShare assigns tasks to a device in proportion

to it’s capabilities. Issues regarding device

overloading(assigning more data than a device can

handle)can be avoided by this.

DroidCluster[5] provides a way to connect mobile-

devices using Wi-Fi that can be used for distributed

computing. However due to emergence of much

faster albeit location-restricted technologies such as

Wi-Fi-Direct , we can build a system that is both

fast, robust and dynamic in comparison to earlier

work in the same field.

III. ARCHITECTURE

A. Wi-Fi Direct and Bluetooth Technology

Wi-Fi Direct is implemented using a software

access point or Soft AP embedded in supporting

devices. This allows devices in the vicinity of the

Soft AP to discover it and establish connection

easily. Wi-Fi Direct allows transfer speeds of up to

250Mbps and supports distances of more than 600

feet. The standard uses WPA2 security using AES

256-bit encryption. Wi-Fi Direct is compatible with

Android Devices above API level 14.

Bluetooth 4.0 uses the 802.11 networking standard

and is capable of reaching speeds of up to 25Mbps

and reach distances up to 200 feet. Security is

provided using AES 128-bit Encryption[6].

B. Processing in Android

PowerShare was developed using Android SDK, as

opposed to Android NDK which supports native

languages such as C and C++. SDK is implemented

using Java which is the core language of Android.

Android uses its own version of JVM called Dalvik

until Android 5.0 after which ART(Android

Runtime) became the default JVM for Android.

ART brought significant improvements to

processing times as it compiles the dalvik bytecode

into native machine code on installation using

AOT(Ahead-of-Time) compilation as opposed to

dalvik which used JIT(Just-in-Time) compiler

which executes each time the app is run. Since

processing times are directly related to power

consumption, ART ends up reducing power

consumption as well. Improvements to ART in the

form of the Optimizer Compiler made the Android

JVM much more efficient in terms of speed and

power consumption. Tests based on Heavy

mathematical functions for over a million

iterations[7] proved that in 64-bit Android 6.0

device, Java code ran about 7% faster than C based

program for the same function. Keeping this and

future development of Android JVM in mind

PowerShare was built using SDK.

C. PowerShare Architecture

PowerShare system architecture is based on Client-

Server system where clients connect to the server

using Bluetooth first and Wi-Fi-Direct afterwards.

This multifold system is mainly used to separate the

control and data transmission modules. The system

is set up to exploit the advantages of both the

Bluetooth and Wi-Fi Direct standards.

Bluetooth allows for a maximum of 8 simultaneous

connections, but the device can be setup in such a

way it can act as a server and a client at the same

time. This type of network where devices act as

client and servers simultaneously is mainly used to

form scatternets[8] which are made up of

overlapping smaller networks called piconets. Wi-

Fi Direct itself supports one to many connections

but since PowerShare uses a combination of

Bluetooth and Wi-Fi Direct, the current prototype is

currently limited to 8 devices. By delegating the

control and synchronization tasks to the Bluetooth

standard we can use the faster and secure Wi-Fi

Direct to handle larger data transmission between

nodes.

The current system of PowerShare involves decided

client Android devices sending requests to a main

central server device via the Bluetooth protocol to

form a Bluetooth network. The server node informs

the clients the port using which communication

with respect to data transfer is to be conducted.

Once a Bluetooth network is established, the Server

then sends connection requests to all the client

nodes to form the secondary Wi-Fi Direct network.

The result of these two procedures is the formation

of a hybrid network as shown in Figure 1 where the

Client-Server system is realized using both the

Bluetooth and Wi-Fi P2P protocols simultaneously.

Figure 1: PowerShare architecture

Once the hybrid network is successfully setup, the

client nodes send their system snapshots consisting

of information regarding their API level, available

RAM, available Processing Power, Battery Power

left and Internet Connection strength to the Server

node via Bluetooth. Apart from this information,

the client nodes also send ping messages to the

server after time intervals of 3 seconds. These are

required to determine a client’s current status. If a

client fails to send a ping alert, then the server

assumes a connection breakdown. The Server

maintains a record of all of its connected clients

containing the client’s unique identifier, the

aforementioned snapshot information sent by the

client and client’s current status. The overall score

of the device is calculated by incorporating weights

given to a particular resource based on its

importance by the user setting up the system. The

weights are mentioned in the algorithm to be

distributed itself. The server then aggregates the

snapshot details from all the devices and assigns

scores to the connected clients based on this and

decides the percentage of task each client should

receive. This idea is based on the fact that each

device is a non-similar and unique entity in

comparison to the other devices on the network.

Instead of delegating tasks equally to devices,

optimally distributing them according to the current

state and overall capacity of the device ensures no

device is delegated a task it cannot handle. Once the

delegation is calculated the server sends the

calculated device-specific data to the client using

Wi-Fi P2P.The device receives the data and

performs the specified algorithmic function on it.

The obtained results are sent back to the server by

all the connected clients using Wi-Fi Direct. The

server aggregates the results as they arrive. Node

failure is also handled in the system. Since the

server is always aware of every client’s status,

connection breakdowns are easy to identify. Once

the server detects a client has failed, it retransmits

the data delegated to the failed client to a connected

and active client who would be able to take over the

role of the downed client.

IV. IMPLEMENTATION AND TESTING

A. Algorithm

Algorithm to be implemented on the distributed

system a(k), weight constants per resource of that

algorithm battery_levela(k), rama(k), neta(k),

free_cpua(k), api_levela(k), battery level of ith slave

node battery_leveli, RAM details of ith slave node

device free_rami , internet access availability of ith

slave node_neti , CPU availability of ith slave node

free_cpui , where ,1 <= i <= no of connected slave

nodes

Steps:

1) i ← 1

2) TOTAL WEIGHT ← 0

3) Sort connected clients in ascending order of their

API level

4) api_level_multiplier ← api_levela(k)

5) If i ≤ no of connected client nodes go to 6 Else go

to 11

6) Calculate total score of ith device as

total_weighti = (battery_levela(k) * battery_leveli)

+ (rama(k) * rami) + (free_cpua(k) * free_cpui) +

(neta(k) * neti)+(api_leveli * api_level_multiplier)

 7) TOTAL_WEIGHT ← TOTAL_WEIGHT +

total_weighti

 8) i ← i+1

9) If api_leveli < api_leveli-1 and

api_level_multiplier is not equal to 1 then,

api_level_multiplier ← api_level_multiplier -1

10) Go to 5

11) i ← 1

12) If i ≤ no of connected client nodes go to 13 Else

go to 16

13) Caclulate size of data to be assigned to ith

device as no of inputsi = (total_weighti / TOTAL

WEIGHT) * total no of inputs

14) i ← i+1

15) Go to 12

16) Generate input list(i)←no of inputsi number of

inputs of algorithm a(k) and send it to clienti

17) Execute a(k) on clienti for input_list(i)

18) Generate resulti and send it back to server

19) i ← 1, Result ← null

20) If i ≤ no of connected client nodes go to 21 Else

go to 24

21) Result ← merge(Result, resulti)

22) i ← i+1

23) Go to 20

24) Stop

B. Testing

The tests were conducted in a 1 Server - 4 Clients

environment. The devices are specified in Table 1.

Table 1:Specifications and Roles of Android Devices used for

testing

Name RAM CPU API Role

Samsung
Note 4
Edge

3 GB Quad-core 2.7
GHz Krait 450
(Snapdragon 805)

19 Server

Samsung
Grand
Quattro

1GB Quad-core 1.2
GHz Cortex-A5

16 Client

Samsung
Galaxy
S4

2 GB Quad-core 1.6
GHz Cortex-A15

21 Client

Samsung
Galaxy
S5

2 GB Quad-core 2.5
GHz Krait 400

23 Client

Samsung
Galaxy
Grand

1 GB Dual-core 1.2
GHz Cortex-A9

19 Client

Figure 2 Splitting Algorithm

Algorithm 1

The first test algorithm is a simple program which

finds the number of times a number occurs in a file

containing 5 million numbers, with values between

0 and 9,99,999. The data was specifically generated

for testing and was generated by using the

Random.nextInt() Java function to get a uniformly

distributed set of values. The test data is fed to the

server. The server follows the connection protocol

and prompts the user to select the test data file. After

this the data is split into multiple parts based on the

score of each client. The data is transferred via Wi-

Fi Direct and the client processes the received input

and sends the occurrence of the number back to the

server via another text file. The server merges all

the received inputs and presents the final output to

the user. The time shown in the data below is

inclusive of the time taken by the server to split the

file and to aggregate the results. Tests were

conducted on input data of size 1 million to 5

million. The results obtained are shown in Table 2

and represented graphically in Figure 3.
Table 2 Computing times for Algorithm 1 with 4 clients

Number of Rows
(in Millions)

Time
(in Seconds)

1 4.023

2 8.421

3 13.434

4 27.129

5 53.701
The same task was also run by varying the number

of clients in the network. A data source of 5 million

numbers was used and the number of clients were

gradually increased. The time taken in running the

algorithm shows a drastic improvement as more

devices are added proving that the system is

efficient. The results obtained are shown in Table 3

and represented graphically in Figure 4
Table 3: Computing time for Algorithm 1 with varying number of

Devices

 Algorithm 2

The second application was a net-intensive task

designed to test the efficiency of the system in

sharing internet bandwidth and overall processing

load. The task was to scrape web-URLs from

Google News on specified topics and aggregate all

the obtained results. To perform this test, a text file

was generated with 1250 rows of topics. The client

receives a part of the file based on its computing

power and network connection strength. For a

network based task the score of a client was

calculated keeping its network connectivity in

consideration. Jsoup was used to parse HTML data

and collect the links. The client searches for a topic

using a modified URL for Google News and

collects the top links from the first page of the result

and writes them into a file. The resultant text files

are then aggregated at the server. The task was

performed on a network connection with speed of

1Mbps.As with the earlier application time obtained

is inclusive of the time taken by the server to split

the file and aggregate the results. The results

obtained are shown in Table 4. A graphical

representation of the same are shown in Figure 5.

The same task was also run by varying the number

of clients in the network. The time taken in running

the algorithm once again highlights the positives of

PowerShare. The results obtained are shown in

Table 5 and represented graphically in Figure 6.
Table 4: Computing times for Algorithm 2

Number of Topics Time (in Seconds)

Number of Devices Time (in seconds)

1 230.898

2 129.405

3 88.149

4 54.112

4.023
8.421

13.434

27.129

53.701

0

10

20

30

40

50

60

1 2 3 4 5

TI
M

E(
IN

 S
EC

O
N

D
S)

ROWS(IN MILLIONS)

Figure 3: Graphical Representation of execution times for Algorithm

1 using 4 clients

230.898

129.405

88.149

54.112

0

50

100

150

200

250

1 2 3 4

TI
M

E(
IN

 S
EC

O
N

D
S)

NUMBER OF DEVICES

Figure 4: Graphical Representation of execution times for Algorithm

1 using varying number of clients

250 56.369

500 115.291

750 186.349

1000 220.629

1250 276.444

Figure 5:Graphical Representation of execution time for Algorithm

2

Table 5: Execution time for Algorithm 2 with varying number of

devices

Number of Devices Time (in seconds)

1 1118.348

2 570.0

3 406.008

4 275.812

V. CONCLUSION

Based on the tests conducted it can clearly be

observed that the using PowerShare a stable

network can be setup and be used in various

computing applications. The short setup time and

computing time show the potential for a Hybrid

network based on Bluetooth and Wi-Fi direct in the

field of distributed computing using smartphones.

The computing power in mobile devices is only going

to increase, applications should thus be developed

that are able to aggregate and harness these

capabilities. PowerShare is still in its nascent stage

with huge scope for advancements. The applications

of a fast, reliable and easy to set-up mobile based

distributed network range from basic number

crunching to computing-intensive sensor networks.

Future scope may involve creating a services that

require real-time response and quick setup such as

traffic information processing or geographical

information and real-time weather processing. The

simplicity of PowerShare lies in its architecture that

uses basic in-built protocols such as Bluetooth and

Wi-Fi P2P found in all the modern-day smartphones.

Developments are aimed at incorporating all the other

mobile Operating Systems such as iOS and support

for Windows- based smartphones. Improvements in

efficiency can be obtained by implementing runtime

load distribution. and by incorporating popular

distributed system concepts such as secondary root

node for handling root node failures.

VI. REFERENCES

[1] Gartner (May 2016) “Gartner Says Worldwide

Smartphone Sales Grew 3.9 Percent in First

Quarter of 2016,”

http://www.gartner.com/newsroom/id/3323017,

2016

[2]Kiran Karra,“Wireless Distributed Computing on

the Android Platform,”

https://theses.lib.vt.edu/theses/available/etd-

10012012-

214953/unrestricted/Karra_K_T_2012.pdf ,2012

[3]“Discovering the Upcoming Wi-Fi Direct

Standard,”

http://www.ciscopress.com/articles/article.asp?p=1

620205&seqNum=2,2010

[4] G. Hinojos, C. Tade, S. Park, D. Shires, and D.

Bruno “BlueHoc: Bluetooth Ad-Hoc Network

Android Distributed Computing ”

http://worldcomp-

proceedings.com/proc/p2013/PDP2883.pdf,2013

[5] Felix Büsching, Sebastian Schildt, Lars Wolf,

“DroidCluster: Towards Smartphone Cluster

Computing -- The Streets are Paved with Potential

Computer Clusters”2012 32nd International

Conference on Distributed Computing Systems

Workshops,2012

[6] “Wi-Fi Direct vs. Bluetooth 4.0: A Battle for

Supremacy,”

http://www.pcworld.com/article/208778/Wi_Fi_Di

rect_vs_Bluetooth_4_0_A_Battle_for_Supremacy.

html , 2010

[7] Gary Sims “Java vs C app performance – Gary

explains” http://www.androidauthority.com/java-

vs-c-app-performance-689081/ , 2016

[8] R. Shepherd, J. Story, and S. Mansoor, “Parallel

computation in mobile systems using bluetooth

scatternets and java,” in Parallel and Distributed

Computing and Networks, 2004, pp. 159–164.f[7

56.369

115.291

186.349
220.629

276.444

0

100

200

300

2 5 0 5 0 0 7 5 0 1 0 0 0 1 2 5 0

TI
M

E(
IN

 S
EC

O
N

D
S)

NUMBER OF TOPICS

1118.348

570.624
406.008

275.812

0

500

1000

1500

1 2 3 4

TI
M

E(
IN

SE

C
O

N
D

S)

NUMBER OF DEVICES

Figure 6: Graphical representation of computing time for

Algorithm 2 with 1250 inputs and varying devices

http://www.gartner.com/newsroom/id/3323017
https://theses.lib.vt.edu/theses/available/etd-10012012-214953/unrestricted/Karra_K_T_2012.pdf
https://theses.lib.vt.edu/theses/available/etd-10012012-214953/unrestricted/Karra_K_T_2012.pdf
https://theses.lib.vt.edu/theses/available/etd-10012012-214953/unrestricted/Karra_K_T_2012.pdf
http://www.ciscopress.com/articles/article.asp?p=1620205&seqNum=2,2010
http://www.ciscopress.com/articles/article.asp?p=1620205&seqNum=2,2010
http://worldcomp-proceedings.com/proc/p2013/PDP2883.pdf,2013
http://worldcomp-proceedings.com/proc/p2013/PDP2883.pdf,2013
http://www.pcworld.com/article/208778/Wi_Fi_Direct_vs_Bluetooth_4_0_A_Battle_for_Supremacy.html
http://www.pcworld.com/article/208778/Wi_Fi_Direct_vs_Bluetooth_4_0_A_Battle_for_Supremacy.html
http://www.pcworld.com/article/208778/Wi_Fi_Direct_vs_Bluetooth_4_0_A_Battle_for_Supremacy.html
http://www.androidauthority.com/java-vs-c-app-performance-689081/
http://www.androidauthority.com/java-vs-c-app-performance-689081/

